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Abstract— Magnetic helical microrobots have great potential
in biomedical applications due to their ability to access con-
fined and enclosed environments via remote manipulation by
magnetic fields. However, achieving collision-free navigation for
microrobots in complex and unstructured environments, partic-
ularly in highly dynamic settings, remains a challenge. In this
paper, we present a novel deep reinforcement learning-based
control framework for magnetic helical microrobots, focusing
on the tasks of goal-reaching and dynamic obstacle avoidance.
To streamline data collection, a specialized training environment
capturing essential aspects of navigation for magnetic helical
microrobots is devised. The robustness and adaptability of the
trained policy are supported using a randomization technique
within the training environment. To facilitate seamless integration
with real-world magnetic actuation systems, a visual processing
algorithm based on OpenCV is devised and incorporated to col-
lect policy observations. Simulations and experiments in various
scenarios validate the high robustness and adaptability of the
method. The performance assessment revealed a success rate of
99% in navigating the microrobot around 4 dynamic obstacles
of comparable speeds and a success rate of 90% in environments
with 14 dynamic obstacles. The results indicate the potential for
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future applications of our method in unstructured, confined, and
dynamic living environments.

Note to Practitioners—The motivation of this work is to develop
a robust and effective control scheme for collision-free naviga-
tion of magnetic helical microrobots in dynamic environments.
The conventional navigation strategies in dynamic environments
mainly include global path planning and local path replanning;
thus, highly dynamic environments require frequent updates to
the planned path, making it difficult to apply in highly dynamic
environments. In this work, a deep reinforcement learning-based
control framework is proposed that can guide microrobots
through many dynamic obstacles to a series of locations without
collisions. The simulation and experimental results validate the
efficacy of the proposed control framework and the robustness
and adaptability of the trained policy. The proposed control
scheme enables better understanding of advanced motion control
methods for magnetic microrobots.

Index Terms— Magnetic helical microrobot, dynamic obstacle
avoidance, electromagnetic actuation, deep reinforcement learn-
ing, sim-to-real transfer.

I. INTRODUCTION

DUE to their ability to access confined and enclosed envi-
ronments inside the human body via remote manipulation

by magnetic fields, magnetic helical microrobots have drawn
great attention for use in minimally invasive medicine [1],
[2], [3], [4], [5], [6], [7], [8]. Since the unstructured liquid
environment of the human body dynamically changes, micro-
robots inevitably encounter moving obstacles, such as cell
clusters and shed tissue, when performing in vivo tasks [9],
[10], [11], [12], [13]. This requires microrobots to perform
autonomous navigation and dynamic obstacle avoidance to
adapt to complex and unpredictable environments. Success-
ful navigation in such environments requires comprehensive
environmental mapping and real-time adaptability to changing
obstacle configurations [14], [15], [16], [17], [18]. Microrobots
need robust intelligence for instant obstacle recognition and
prompt path adjustments, thereby ensuring efficient and safe
traversal through complex spaces. Therefore, fast and accurate
environment interpretation and decision-making are especially
important.

The traditional navigation framework involves perceiving
the environment, localizing the microrobot, mapping its sur-
roundings, and finally employing path planning to determine
the optimal route to the goal. In this framework, path planning
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plays a crucial role because it dictates the trajectory that the
microrobot should follow in avoiding obstacles and achiev-
ing its objectives [19], [20], [21], [22]. Traditional global
path planning methods, such as RRT [23], are proficient
in exploring high-dimensional state spaces efficiently. These
algorithms excel in generating feasible paths for microrobots,
especially in complex maze-like environments [24], [25], [26].
However, their reliance on static maps renders these methods
unsuitable for dynamic environments. Potential field methods,
such as the artificial potential field (APF), involve real-
time planning, which enables microrobots to quickly adjust
their motion trajectories to adapt to dynamic changes in
the environment [27], [28], [29]. However, such navigation
methods are primarily based on local sensory information
and do not incorporate global map information, which may
limit their ability to find optimal paths in large-scale envi-
ronments. To counterbalance these limitations and strike a
balance between global optimality and local reactivity to
dynamic changes, hybrid methods incorporating global path
planning and local path replanning have been proposed to
ensure that microrobots follow an efficient route and react
quickly to dynamic changes in the environment [30]. However,
these methods are sensitive to parameters and therefore lack
adaptability. Additionally, intensive computations are needed,
which may constrain the applicability of these methods in
real-time scenarios, especially in highly dynamic environ-
ments. To reduce the computational burden, a hybrid method
augmented with a fuzzy logic approach was proposed [31].
The fuzzy logic rule base utilizes expert experience to con-
trol microrobots, and real-time turn angles are determined
through a fuzzy logic-based path planner to avoid incoming
obstacles. Nevertheless, extending fuzzy logic systems to
handle environments with a high number of dynamic obstacles
poses challenges, as the rule base may become intricate and
challenging to manage in such scenarios. In conclusion, the
existing navigation strategies for microrobots are inadequate
for operating effectively in highly dynamic environments.
This inadequacy arises from the challenges associated with
concurrently managing static and dynamic elements, as well
as the computational burden imposed by complex algorithms.
Therefore, an advanced and adaptive navigation strategy is
needed for guiding microrobots through highly dynamic envi-
ronments.

Recent advancements in robotics have employed deep
reinforcement learning (DRL) as a promising approach for
achieving more flexible, autonomous, and adaptive naviga-
tion in dynamic environments. DRL has been applied in
various control scenarios, including adaptive motion plan-
ning [32], fleet management [33], and cooperative task
execution [34]. These approaches allow agents to learn com-
plex and nonlinear mappings, enabling them to adapt to
intricate environments [35]. The workflow of DRL-based
navigation typically involves iteratively training an agent to
interact with its environment and learn a policy that maps
observations to actions through trial and error. This process
enables autonomous decision-making in dynamic and com-
plex environments, thereby enhancing the agent’s navigation
capabilities. By applying DRL-based methods to the motion

control of microrobots, more efficient and robust navigation
in complex and dynamic environments can be achieved. How-
ever, due to scale effects and kinematic differences from
the macroscale to the microscale, the motion behavior of
microrobots is affected by various factors, such as fluid distur-
bances and material surface effects, making accurate modeling
challenging. Moreover, integrating sensors at the microscale
is impractical, resulting in insufficient feedback informa-
tion for iteration, which is essential for DRL algorithms
requiring extensive environmental, motion, and error analysis
data for calculation and training. As a result, translating
DRL-based methods to microrobot navigation encounters diffi-
culties in modeling accuracy, data acquisition, and adaptation
to real-world scenarios. Therefore, developing a DRL-based
collision-free navigation strategy for microrobots in dynamic
environments remains a significant challenge.

In this paper, we introduce a novel control framework based
on deep reinforcement learning (DRL) designed for magnetic
helical microrobots, focusing on the tasks of goal-reaching
and dynamic obstacle avoidance. The policy, trained through
simulated interactions between the microrobot and a dynamic
environment, enables effective navigation through dynamic
obstacles to reach predefined goals. To enhance the efficiency
of data collection for training, we constructed a customized
training environment that captures essential aspects of navi-
gation for magnetic helical micro swimmers. To fortify the
robustness and adaptability of the trained policy in real-world
scenarios, a randomization technique is incorporated into the
training environment. For seamless transfer of the trained
policy to real-world magnetic actuation systems, a visual
processing algorithm based on OpenCV is developed and inte-
grated with the system to collect policy observations. Finally,
simulations and experiments in environments characterized
by a high degree of variability are conducted to validate
the robustness and adaptability of the proposed method,
demonstrating its great potential for biomedical applications
in unstructured, confined, and dynamic living environments.

The structure of this paper is outlined as follows. Section II
provides an in-depth overview of the microdrill design and the
DRL-based control framework. Section III gives the details
of the designed environment and expounds upon the training
specifics. The experimental results are presented in Section IV,
and finally, Section V provides the conclusions of this paper.

II. DESIGN AND MODELING

A. Design and Fabrication of Microdrills

We designed a microrobot with a cylindrical core that is
enveloped by a double helix structure. The 3D microdrill
design is shown in Figure 2(a). The microdrill has a length of
75 µm, pitch of 60 µm, wavenumber of 1.25, inner diameter
of 4.2 µm, and cord radius of 12.3 µm.

The microdrill was made of compounded biocompatible
photoresist with a photoinitiator, which was fabricated by a
high-precision 3D photolithography system (NanoScribe Pho-
tonic Professional GT) [36]. In addition, the microrobots were
uniformly coated with magnetic nanoparticles for magnetic
actuation.
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Fig. 1. Pipeline of the whole DRL-based control framework.

Fig. 2. (a) Structural design of the microdrill. (b) Motion diagram of the
microdrill.

B. Actuation of Microdrills

To actuate the microdrills, a rotating magnetic field gen-
erated by an electromagnetic system comprising eight axial
electromagnets is utilized. After the microdrill is magnetized
perpendicular to its helical axis, the magnetization of the
microdrill can be viewed as being directed perpendicular to its
helical axis, as illustrated in Figure 2. When the microdrill is
subjected to an external uniform magnetic field, the magnetic
torque τ of the microdrill can be expressed as:

τ = VM × B (1)

where V represents the volume of the microrobot, M represents
its magnetization, and B denotes the external magnetic field.
The torque tends to align the magnetic moment with the
applied field [37]. By continuously rotating the applied field B
in a circle on a two-dimensional plane, the microdrill under-
goes continuous rotation around its helical axis to achieve
propulsion. The swimming direction and forward speed of the
microdrill can be controlled by adjusting the rotation direction
and frequency of the magnetic field.

C. DRL-Based Control Framework

Although the motion dynamics of magnetic helical micro-
robots can be theoretically modeled, when microrobots are
actuated under external magnetic fields to perform dynamic

tasks in real environments, factors such as fluid viscos-
ity, impurities, and surface roughness significantly affect the
microrobots’ velocity, swimming direction, and motion stabil-
ity. Not all the influencing factors can be applied or tested in
every experiment because this would require considerable time
and reduce the control efficiency. Therefore, it is necessary to
construct a customized test environment model that includes
key aspects of real-world environments as a training envi-
ronment for achieving precise motion control of microrobots.
Additionally, instead of modeling the entire dynamics of
the environment in a simulator, certain key aspects of the
real world are abstracted, and specific simulators addressing
specific requirements and constraints are customized for sim-
plicity. To simplify the simulation environment, the following
key points should be considered:

1. The speed of the microdrill is controlled by the fre-
quency of the rotating magnetic field, and we maintain
a constant speed in the simulation since the microrobot
typically operates at a fixed frequency lower than the
step-out frequency.

2. The direction of the microdrill motion is controlled by
the direction of the rotating magnetic field, which is the
primary parameter we control during navigation.

3. The microdrill must maintain a safe distance from
dynamic obstacles; we check for collisions in the simu-
lation by comparing the distance between the microdrill
and an obstacle to the sum of the radii of their circum-
scribed circles.

Following the construction of the custom training environ-
ment, a DRL-based control pipeline is developed. As depicted
in Figure 1, the framework comprises four main modules: the
simulation environment, the navigation policy, the real-world
magnetic actuation system, and the OpenCV-based image
processing algorithm. The simulation environment abstracts
the navigation task for magnetic helical microrobots, and the
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Fig. 3. Illustration of the key parts of the custom training environment,
including the observation space, the action space and the reward function.

navigation policy is trained within this custom simulator.
The real-world magnetic actuation system processes actions
from the policy and generates magnetic fields to control
the microrobot. The image processing algorithm serves as
a feedback module, providing observations during training.
A sim-to-real transfer method is employed to minimize the
discrepancies between the simulation and real-world environ-
ments. To enhance robustness, the training phase incorporates
both observation and action noise to mitigate tracking and
actuation discrepancies. Furthermore, physical randomization
is employed to ensure that the policy is adaptable across a
spectrum of dynamics, thereby broadening its applicability to
real-world scenarios.

III. METHODS

In this section, we design a control framework aimed
at training a policy to guide a microdrill toward a goal
while avoiding dynamic obstacles. A customized training
environment that follows the Open AI gym interface [38] is
built, as illustrated in Fig. 3. Our approach involves training
the policy in simulation and then applying it to real-world
environments. The key components of the control framework
are described in this section.

A. Customized Training Environment

1) Task: Our task is to navigate a microdrill actuated by
an external electromagnetic system, as depicted in Figure 2,
to a specific goal location while avoiding dynamic obstacles.
The microdrills are actuated by a rotating magnetic field, and
the direction and speed of motion are controlled by the direc-
tion and frequency of the external rotating magnetic fields,
respectively. In the simulator, the goal is randomly generated
within the environment’s boundaries in each episode and the
speed of the agent is set as v. And a fixed number of obstacles
with random sizes and speeds are randomly generated along
the bottom or the rightmost edge of the environment, while
avoiding placement near the bottom-left and upper-right cor-
ners, as obstacles in these areas would quickly move outside
the boundary. The position of a generated obstacle i can be
expressed as follows:

pi =


x ∼ U [

1
15

W, W ], y = 0 if r = −1

x = W, y ∼ U [0,
14
15

H ] if r = 1
(2)

where U [a, b] denotes a uniform distribution between a and
b, r is a random variable drawn from a discrete uniform
distribution {−1, 1}, and W and H are the width and height
of the environment, respectively.

The direction of each obstacle’s movement varies in each
timestep, but generally, the obstacles move toward the upper
left corner of the environment. The speed of an obstacle i in
each timestep is:

vi =

(
vi x

viy

)
=

(
U [−v, v/3]

U [v/3, v]

)
, i = 1, 2, . . . , n (3)

The number of obstacles in the environment is fixed during
training, and the environment replaces any obstacles that move
outside the boundaries with new obstacles generated according
to (2). The microdrill fails if it collides with an obstacle or
the environment’s boundaries and succeeds upon reaching the
goal.

2) Observation: The observation space is a continuous box
with lower and upper bounds defined by the width, height, and
other parameters of the environment:

O = [px , py, θ, r, gx , gy, o1x , o1y, r1, . . . , do, t] (4)

where px is the x-coordinate of the microdrill’s current posi-
tion, py is the y-coordinate of the microdrill’s current position,
θ is the orientation (in radians) of the microdrill’s heading, r is
the radius of the circumscribed circle of the microdrill, gx and
gy represent the position of the goal, onx , ony and rn denote
the position and radius of the n-th obstacle, do is the distance
to the closest boundary of the environment, and t denotes the
number of timesteps in the episode.

3) Action: In this environment, we focus on the key param-
eters that govern the motion of a helical micro swimmer,
namely, the direction of the rotating magnetic field. The action
space A is a 1-dimensional box with lower and upper bounds
of −1 and 1, respectively. The action is used to adjust the
orientation of the microdrill, which is updated by adding the
product of the action and π/6 to the current orientation. In this
way, we limit the change in the orientation of the microdrill
to one timestep within the range of

[
−π/6, π/6

]
.

A = [θd ] (5)

4) Reward: The reward function r calculates a reward
signal based on four terms: navigation bonus bn , obstacle
penalty po, time penalty pt , and velocity potential pv .

r = bn + po + pt + pv (6)

The navigation bonus bn , determined by the attractive
potential, encourages the microdrill to move toward the goal by
providing a reward proportional to the inverse of the distance
to the goal. The closer the microdrill is to the goal, the greater
the reward.

bn = ca ·
1

d2g
(7)

where ca is the attraction coefficient and d2g is the distance
between the microdrill and the goal position.

The obstacle penalty po encourages the microdrill to avoid
obstacles by providing a penalty proportional to the inverse of
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the distance to the obstacles. The closer the microdrill is to
the obstacles, the higher the penalty:

po = −cr ·

n∑
i

(
1

d2i
−

1
dsa f e

)
(8)

where n is the number of obstacles and d2i is the distance
between the microdrill and the i th obstacle position; do is
included in d2i in this equation. The repulsive coefficient cr

determines the strength of the repulsive force, while the safe
distance dsa f e determines the distance at which the repulsive
force starts to take effect.

The time penalty pt discourages the microdrill from taking
too much time to reach the goal. It provides a negative reward
that is proportional to the time taken by the microdrill.

pt = −kt (9)

where kt is a constant penalty.
The velocity potential pv encourages the microdrill to move

away from obstacles and penalizes it for moving toward
obstacles. v⃗rel is the relative velocity between the microdrill
and the i-th obstacle, a⃗i is the unit vector pointing from
the i-th obstacle to the microdrill, and n is the number of
obstacles. The dot product parameter determines the direction
of the microdrill’s velocity relative to the obstacle, while the
velocity potential parameter kv determines the strength of the
penalty. A positive dot product indicates that the microdrill
and obstacle are moving in roughly the same direction, and
the velocity potential is set to 0, which means that no reward
or penalty is given. A negative dot product indicates that the
microdrill is moving toward the obstacle, and the velocity
potential is set to a negative value, which indicates that the
microdrill is penalized.

pv =

n∑
i

{
0, if v⃗rel · a⃗i > 0
kv · v⃗rel · a⃗i , otherwise

(10)

B. Randomization

Despite the meticulous design of the custom environment
for the task, the simulation remains an approximation of the
physical setup. Even slight deviations from the simulation can
result in undesirable outcomes in real-world experiments. For
instance, a microdrill can drift due to interactions with the
solid boundary beneath it [39], causing a discrepancy between
its actual motion and the intended input action. Moreover, this
discrepancy varies across different microrobots and rotating
frequencies, making accurate modeling challenging. These
disparities between the simulation and real-world setup create
a gap with reality, meaning that policies trained solely in
the simulator will struggle with effective transfer to real-
world scenarios. Therefore, the transfer of DRL policies from
simulation environments to reality has become a crucial step
toward the application of complex robotic systems, and the
most widely used method for learning transfer is domain
randomization. Domain randomization involves extensively
randomizing the simulation parameters rather than meticu-
lously modeling every aspect of the real world; this ensures

TABLE I
STANDARD DEVIATION OF OBSERVATION NOISE

that the real distribution of the real-world data is covered
despite the mismatch between the model and real world.

In real-world scenarios, data acquisition systems such
as cameras often introduce noise in measurements due to
various factors such as sensor inaccuracies, environmental
disturbances, or electronic noise. By adding noise to policy
observations, we can create a more realistic training envi-
ronment that better mimics the noise present in real-world
situations. By exposing the RL microdrill to various sources
of noise during training, the microdrill is forced to learn
policies that are more robust and adaptive. To achieve this,
we incorporate Gaussian noise with a mean µ of 0 and a
user-defined standard deviation σ , as outlined in TABLE I,
the noise level (σ) is set based on the expected level of
image capturing and processing inaccuracy acquired from
experimentation.

In addition to introducing observation noise, we incorporate
the randomization of physical parameters in our training
environment to enhance the adaptability of the trained micro-
drill to real-world conditions. Before each episode begins,
a set of physical parameters is uniformly sampled within a
defined range. The ranges of the parameters are determined
by measurements from our actual experimental setup, and
the values of the parameters are kept constant throughout the
entire episode. The randomization helps the agents general-
ize across different environmental conditions and increases
the adaptability by ensuring they don’t overfit to a specific
set of physics parameters. The specific ranges for physical
parameter randomizations are detailed in TABLE II, which
correspond to the expected variation in the real-world situa-
tions where the policy should work. Specifically, the “Number
of obstacles” indicates the trained policy is expected to guide
the microrobot to navigate through this range of obstacles.
The “Microdrill speed” ranges from 20 µm/s to 40 µm/s,
corresponding to a rotating frequency of 4 Hz to 12 Hz
for our microrobots [36]. And the “Goal radius” reflects the
variability in task criteria for determining goal achievement.
Unlike the other physical parameters listed, the speed and
radius of each obstacle are not initialized before each episode.
Instead, the speed of each obstacle is dynamically adjusted
according to formula (3). Since some obstacles may move
beyond the observable boundary of the simulated environment,
new obstacles are generated to ensure a constant number
of obstacles throughout an episode, and the radius of each
obstacle is uniformly sampled within a specified range upon
its generation.

A physical microdrill exhibits rolling (drifting) induced by
an imbalance in drag forces resulting from its interaction
with the solid boundary beneath it [36]. Rolling introduces
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TABLE II
RANGES OF PHYSICAL RANDOMIZATION

a deviation between the actual motion direction of the micro-
drill and the intended input direction. To accommodate this
deviation, the final direction of the rotating magnetic field is
adjusted by adding 16◦, a value predetermined by the micro-
drill’s design, before it is input to the microdrill. Furthermore,
to address the signal transmission delays in the magnetic
actuation system and the external environmental disturbance
of the microrobot, we introduce Gaussian noise with a mean
of 0 and a standard deviation of 10% of the action range into
the action space.

C. Training

Given that both the action space and observation space in
our tailored environment are continuous, we opt for prox-
imal policy optimization (PPO) as our training algorithm.
The PPO is selected for its sample efficiency and employs
a clipped surrogate objective, mitigating the risk of overly
drastic policy updates and thereby preventing divergence
issues. Its stochastic policy ensures an appropriate exploration-
exploitation trade-off, aiding the microdrill in discerning the
optimal policy given the complexities of our dynamic envi-
ronment.

Fig. 4 provides a high-level overview of our training
process. Training begins by initializing an instance of the
“ObstacleAvoidanceEnv” environment, which is specifically
designed for microdrill navigation toward a goal while avoid-
ing obstacles. Subsequently, a vectorized environment is
generated with multiple parallel instances of the obstacle
avoidance environment to enhance sample efficiency during
training. Our chosen reinforcement learning algorithm is PPO,
and the policy function employs a multilayer perceptron
(MLP). This neural network, acting as the actor, takes the
environment state as input and outputs the probability distri-
bution over actions. Parallel to this, a critic network is used
to estimate the value function, which predicts the expected
return (or future rewards) from a given state. The critic’s
value estimation helps in computing the advantage function,
which evaluates the action produced by the actor. Additionally,
an evaluation callback method is configured to periodically
assess the model’s performance in the environment and log
relevant metrics. Throughout training, the actor network guides
the microdrill’s actions at each timestep, while the critic
network evaluates these actions to refine the policy. The PPO
utilizes a combination of policy and value iteration for iterative
policy improvement. The use of a clipped surrogate objective
ensures stable policy updates by constraining the objective
function to prevent large updates that might compromise
training stability. The actor network is updated to improve
the policy, and the critic network is updated to refine its

Fig. 4. Illustration of the training process with randomization.

value predictions. After training, the PPO model is saved for
subsequent evaluation, testing, and deployment.

Throughout training, we utilize two key metrics, namely,
the “episode length mean” and “episode reward mean.” These
metrics represent the average number of time steps (or actions)
taken by the microdrill and the average cumulative reward
obtained through an episode, respectively. Paramount to the
training outcomes is the parameter configuration within the
reward function, which defines the feedback the microdrill
receives based on its motions in the environment. Notably,
careful tuning is essential for preventing undesirable behaviors.
For example, an excessively large penalty may incentivize
the microdrill to crash into boundaries for fast but undesired
termination, while an overly generous navigation bonus may
lead the microdrill to circle the goal endlessly without com-
pleting the task. After iteratively tuning the reward function
over hundreds of iterations, a balanced formulation consistent
with our objectives was achieved. The policy involves training
for 1 million total time steps on an NVIDIA GeForce RTX
2060 with 22 GB of memory, which was completed in 38 min-
utes and 41 seconds. The training metrics, as depicted in Fig. 5,
reveal that the “episode length mean” continually decreases
after the initial exploration phase, and the “episode reward
mean” steadily increases until it reaches an extreme value at
approximately 200k time steps. This trend signifies that the
microdrill progressively refines its strategy for more efficient
goal achievement, ultimately attaining optimal performance at
approximately 200k time steps.

D. Simulation Results

To evaluate the obstacle avoidance efficacy of the trained
policy, simulation tests are conducted. To evaluate the
robustness of the trained policy, the microdrill and goal
are randomly positioned within an environment featuring a
variable number (ranging from 0 to 30) of static or dynamic
obstacles. The failure criteria include instances where the
microdrill moves outside the boundaries, collides with obsta-
cles, or exceeds the time limit. The success rate, which
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Fig. 5. Evaluation metrics during training. (a) The average length of episodes
during training. (b) The average reward of episodes during training.

Fig. 6. Success rate of static and dynamic obstacle avoidance with various
numbers of obstacles in the simulation.

quantifies the ability of a microdrill to reach its goal with-
out colliding with obstacles, is computed over a thousand
simulation test episodes. As shown in Fig. 6, the policy, ini-
tially designed for dynamic obstacle avoidance, is effectively
extended to cases of static obstacles as well. The orange
segment indicates cases with a number of obstacles ranging
from 8 to 18, consistent with the training range. Notably,
the average success rates for static and dynamic obstacle
avoidance within this range are 94.0% and 92.2%, respectively.
Considering success rates exceeding 80% as acceptable, the
green section denotes the acceptable range and is notably
broader than the originally trained range.

IV. EXPERIMENTS

A. System and Experimental Setup

In real-world experiments, our microdrills were placed in
Petri dishes filled with DI water. Due to the challenge of
enclosing a microdrill with obstacles of predefined sizes and
speeds, we generated artificial obstacles through image pro-
cessing to assess the microdrill performance. The radius of the
obstacles ranged from 37.5 µm to 150 µm, and the size of the
environment was 840 µm × 1125 µm. The workflow depicting
the integration of the magnetic actuation system with the
deep RL policy is presented in Fig. 7. The detailed hardware
specifications can be found in our prior publication [36],
[40]. Throughout the experiments, an inverted microscope was
used to capture real-time images, while an OpenCV-based
image processing algorithm was developed to extract essential
observation data, including the position, orientation, and radius

Fig. 7. Schematic of the electromagnetic control system combined with the
deep RL policy.

of the microdrill, as well as the positions and radii of artificial
obstacles within the field of view. Each image frame is cropped
to eliminate extraneous areas, thereby reducing noise. Gaus-
sian blurring is then applied for smoothing and to suppress
minor noise, followed by morphological opening operations
for additional noise reduction. The image is converted from
the BGR to the HSV color space, which enhances detection
of the black microrobot. Contour matching is utilized to locate
the microrobot, and shape fitting is employed to determine
its position and orientation. A black mask is applied between
frames to improve detection accuracy and reduce computa-
tional complexity. The extracted observations are subsequently
input into the trained policy, which controls the microdrill’s
motion by adjusting the direction of the rotating magnetic
field. The policy’s output is sent to the control panel, where the
necessary current for each electromagnetic coil is calculated to
generate the desired magnetic field. A subordinate microcon-
troller receives these data and converts them into pulse-width
modulation (PWM) signals with adjustable duty cycles. These
signals are transmitted to current drivers, which then deliver
the programmed current to each electromagnet, generating the
desired magnetic field to control the microdrill’s motion.

B. Real-Time Obstacle Avoidance in Three Scenarios

To assess the robustness and adaptability of our trained
policy in obstacle avoidance, three distinct scenarios were
designed for experimentation. These scenarios encompass
environments featuring static obstacles, dynamic obsta-
cles with entirely random motions, and dynamic obsta-
cles following a specified flow direction, as illustrated in
Fig. 8 (a), (c), and (e). In each scenario, the microdrill,
obstacles (depicted as purple blobs), and goal (depicted as a
green star) are initially placed at random positions. The green
circles around them represent the circumcircles. Collisions
with obstacles and goal attainment are identified when the
distance between two objects is smaller than the sum of their
circumradii. The red arrow signifies the motion direction of
each obstacle. The microdrill is tasked with pursuing the goal
while avoiding obstacles. Upon reaching a goal, a new goal
is randomly generated for the microdrill. Notably, the model
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Fig. 8. Schematic illustrations and experimental images depicting obstacle avoidance and goal reaching of the microdrill in various scenarios.

was initially trained exclusively in environments similar to
those in Fig. 8 (e) with randomizations. Experiments across
these three scenarios validate the obstacle avoidance ability
and adaptability of our model.

In real-world experiments, image processing is employed
to generate artificial obstacles at random positions. Across all
scenarios, the number of obstacles within the field of view is
consistently maintained at 12, with radii uniformly distributed
between 37.5 µm and 150 µm—corresponding to half to twice
the length of the microrobot. The rotational frequency is set
at 10 Hz, corresponding to a forward velocity v of 38.75 µm/s
for the microrobot. In the scenario involving dynamic obstacles
with entirely random motion, the x and y coordinates of each
obstacle randomly change within the range of [−|v|, +|v|]

every second, resulting in a vibrating motion pattern. In the
scenario with dynamic obstacles following a specified flow
direction, the x coordinates change randomly within the range
of [−|v|, +|v|/3], while the y coordinates vary within the
range of [+|v|/3, +|v|] each second, creating the appearance
of obstacles moving in a flow from the bottom right to the
upper left. Fig. 8. (b) shows actual experimental screenshots
of the microdrill navigating through static obstacles. In the
initial state, static obstacles of varying sizes and the first goal
are randomly generated, prompting the microdrill (in a yellow
circle) to initiate navigation. Upon reaching a goal, a red flag
with an index indicating the order of the tracked goals is
marked on the green path, and a new goal is generated. Images
ii and iii in Fig. 8 (b) show that as the microdrill approaches
a goal in close proximity to obstacles, it prioritizes reaching
the goal over obstacle avoidance by moving directly toward
the goal. Image iv illustrates the full path of the microdrill
following a sequence of goals through static obstacles, high-
lighting its adaptability to static obstacles despite having been

trained in environments with dynamic directional obstacles,
as shown in Fig. 8 (e). Fig. 8. (d) shows an image sequence of
the microdrill navigating through randomly moving obstacles,
displaying navigation performance akin to that of the scenario
with static obstacles. When the goals are near obstacles,
the microdrill exhibits a similar tendency to prioritize goal-
reaching. In Fig. 8 (f), obstacles are generated from the right
and bottom edges, following an imaginary flow toward the
upper left, and their speeds are expressed by (3). Unlike in
the previous scenarios, images ii and iii in Fig. 8 (f) show that
when the microdrill approaches a goal close to an obstacle,
it strategically avoids a direct collision. By anticipating the
obstacle’s path, the obstacle is circumvented, demonstrating
the ability to navigate dynamically. This difference arises from
the velocity potential component in our reward function (10),
which incentivizes the microdrill to move in a manner that
prevents obstacles from approaching it while penalizing move-
ment toward obstacles moving away. The results align with our
expectations. In scenarios with predictable obstacle motion
(Fig. 8 (e)), the microdrill prioritizes obstacle avoidance.
In scenarios with static or randomly moving obstacles, col-
lisions are inevitable in reaching the goal, prompting the
microdrill to prioritize goal attainment. These experimental
results affirm that the trained model exhibits effective obstacle
avoidance with directional dynamic obstacles and adapts well
to static and random dynamic obstacles.

C. Performance of Dynamic Obstacle Avoidance

To comprehensively assess the performance of our trained
policy, we conducted experiments to observe and record the
dynamic obstacle avoidance capabilities of the microdrill.
Initially, we roughly positioned the microdrill and its goal
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Fig. 9. Performance metrics of dynamic obstacle avoidance with varying
rotating frequency and obstacle density. (a) 3D surface plot view of the success
rate. (b) 2D contour map view of the success rate. (c) 3D surface plot view of
the collision rate with obstacles. (d) 2D contour map view of the collision rate
with obstacles. (e) 3D surface plot view of the collision rate with boundary.
(f) 2D contour map view of the collision rate with boundary.

symmetrically within the environment, placing the microdrill
at the upper left corner and the goal at the bottom right,
with a distance of approximately 1140 µm between them.
The number of obstacles and the magnetic field frequency
were set as variables. The number of obstacles (n), reflecting
the environmental complexity, ranged from 4 to 24 in incre-
ments of 2. Additionally, the rotating frequency ( f ), which
represents the speed of the microdrill, ranged from 4 to 12 in
increments of 1. For each group of n and f , we initialized
100 test cases in which each had an environment containing n
randomly generated obstacles moving within the flow, and the
microdrill was tasked with reaching the goal without collision.
The successful instances were recorded to yield the success
rate, which is graphically presented in Fig. 8. The trend
depicted in Fig. 9 reveals a decline in the success rate as the
number of obstacles increases; this aligns with expectations,
as a greater number of obstacles increases the degree of
environmental complexity. Additionally, a discernible slope is
observed in Fig. 9 (b), where the success rate of navigation
first increases as the rotating frequency increases and then
decreases to some degree. Within the microdrill’s step-out
frequency, the forward velocity and the rotating magnetic
field frequency exhibit a linear relationship. A lower rotating
frequency results in slower motion for the microdrill, making
collisions almost inevitable when pursued by faster obstacles.
Conversely, a higher frequency endows the microdrill with
greater speed and agility but reduces the available action steps
when encountering obstacles, yielding a slope in the success
rate in Fig. 9 (b). Furthermore, Fig. 9 (c) and (d) show an

inverse relationship between the obstacle collision rate and
the success rate during navigation, indicating the increased
difficulty of dynamic obstacle avoidance as the number of
obstacles in the environment increases. Fig. 9 (e) and (f)
depict the rate of collision with boundaries, which represents
the likelihood of the microrobot colliding with the boundary
or straying outside the field of view during navigation. The
results indicate that the collision rate with boundaries remains
below 2% across most settings and exhibits no significant
correlation with the frequency of the rotating magnetic field
or the number of obstacles. This trend may be attributed to the
penalty imposed on boundary collisions in the reward function.
In this function, the boundary is treated as a stationary obstacle
with four sides for the microrobot. Consequently, during
the training phase, the microrobot encounters the boundary
frequently, resulting in penalization and prompting the rapid
learning of a collision avoidance strategy. The data plot
underscores the effectiveness of the navigation strategy in
avoiding boundary collisions and proficiently controlling the
microrobot’s movement within the designated range. To opti-
mize the obstacle avoidance performance of the microdrill,
it is crucial to determine an appropriate rotating frequency,
contingent on the structure of the microdrill and the average
speed of the surrounding obstacles. Through the experiments,
the average speed of the dynamic obstacles was determined
to be approximately 28.3 µm/s. The microdrill achieved its
best navigation performance at a rotating frequency of 8 Hz,
corresponding to a forward velocity of 31 µm/s. At this
frequency, the microdrill achieved a success rate of 99% with
4 obstacles in the environment, 90% with 14 obstacles and
80% with 20 obstacles.

To comprehensively evaluate our method’s performance,
we compared its navigation success rate and average naviga-
tion time with those of two existing approaches for dynamic
microrobot environments. The first approach utilizes fuzzy
logic, which involves constructing a rule base from human
experience to navigate through dynamic obstacles [31]. The
second approach focuses on path planning, integrating the
improved rapidly exploring random trees (IRRT) algorithm for
global path planning and the improved artificial potential field
(IAPF) algorithm for local path planning [30], [40], [41]. Two
metrics, the success rate and average navigation time, were
used for quantitative evaluation, representing collision-free
navigation success and the average time taken for successful
navigation, respectively. The experimental environment mir-
rored previous settings, with the microdrill positioned at the
upper left corner and the goal at the bottom right. We examined
100 test cases for varying numbers of obstacles. To ensure
fair comparison of navigation efficiency through the average
navigation time, we maintained a constant microdrill speed by
fixing the rotating frequency of the magnetic field at 8 Hz,
at which the microdrill achieved its best performance as
shown in Fig. 10. Fig. 10 (a) indicates that our DRL-based
method achieved a higher success rate across most numbers
of obstacles. While all methods achieved high success rates
in less dynamic environments, when the number of obsta-
cles exceeded 12, the success rates of the baseline methods
significantly decreased, underscoring our method’s ability to
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Fig. 10. Performance comparison of different methods. (a) Success rate.
(b) Average navigation time of successful cases.

handle more dynamic and complex environments. Fig. 10 (b)
illustrates the average navigation times of the three methods.
With a fixed microdrill speed, the navigation time directly
reflects the length of the actual navigation path. Compared
with our method, the fuzzy logic approach exhibited longer
navigation times than our method across all numbers of
obstacles. Conversely, the “IRRT + IAPF” method showed
slightly lower navigation times than our method with fewer
obstacles due to efficient global path planning by the IRRT
algorithm. However, as the environment grew more dynamic,
particularly with more than 12 obstacles, the navigation time of
the “IRRT + IAPF” method significantly increased, whereas
our method found a more efficient path. Overall, our pro-
posed method outperformed both existing methods in terms
of success rate and navigation efficiency, particularly in highly
dynamic and complex environments.

V. CONCLUSION

In this paper, we presented a DRL-based control frame-
work for goal-reaching and dynamic obstacle avoidance via a
microdrill. The overall control strategy was implemented with
components including a custom training environment, the DRL
algorithm, a magnetic actuation system and a real-time visual
tracking method. First, we designed and fabricated a helical
drill-like microrobot actuated by a rotating magnetic field.
For effective data gathering, we constructed a custom DRL
training environment adhering to the OpenAI Gym interface,
abstracting the core physics of the navigation task. Based on
the characteristics of our environment, we employed the PPO
method to train the policy and integrated a randomization
technique to enhance adaptability in real-world scenarios.
To implement the policy in real-world systems, we developed
a visual processing algorithm based on OpenCV, which,
when combined with the magnetic actuation system, provides
observations for the policy. The simulation and experimental
results demonstrate that our method achieves the designed
task of goal-reaching and dynamic obstacle avoidance with
significant adaptability, and the method shows great potential
in biomedical in vivo applications.

In future work, we aim to extend our methodology to
three-dimensional space, enabling navigation in dynamic 3D
environments. Furthermore, while our present approach is
tailored for controlling a single microdrill during navigation,
our future efforts will focus on scenarios involving multiple
microrobots collaborating on tasks while actively avoiding
collisions with each other.
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